Impedance Matching
The Science Behind the Trinasmart Optimizer
Table of Contents

A SOLUTION FOR MODULE MISMATCH..3

“TRIAL AND ERROR” MAXIMUM POWER POINT (MPP) TRACKING ..3

IMPEDEANCE MATCHING ..4

WHAT “IMPEDEANCE MATCHING” IS NOT ..4

It is NOT “Distributed MPPT”...4

It is NOT a “MicrolInverter”..5

It is NOT “Distributed DC/DC Stage”..5

WHAT “IMPEDEANCE MATCHING’ IS..5

IMPEDEANCE MATCHING - AN ANALOGY ...8

Summary ...11
The Trinasmart Optimizer is a revolutionary solution for harvesting the maximum power available from a photovoltaic (PV) array. Like other distributed balance-of-system (BOS) architectures, the Trinasmart Optimizer™ solution extracts energy from each module, virtually eliminating the negative effect of weaker modules on the rest of the PV array. However, Trinasmart does so with unprecedented efficiency and accuracy, with very few incremental electronic components for maximum reliability and minimum cost. This paper will further discuss the novel and patented approach of "impedance matching" implemented in the Trinasmart Optimizer.

A SOLUTION FOR MODULE MISMATCH
Today’s PV systems are typically comprised of modules (panels) serially connected to one another in strings until the voltage maximum is met (600V or 1kV as mandated by the US and Europe respectively). For example, a multi-crystalline silicon module with Voc of 35V will usually find itself connected in series with 10 or 11 others in the US. For larger installations, several of these strings are connected in parallel to form an array. Because of the serial and parallel interconnection, power output of each module in an array will be affected by the weakest modules (figure 1).

Therefore, it is important for the modules in the installation to be well matched in power rating and from the same manufacturer. Trina Solar and most other module manufacturers meticulously flash-test their products after assembly and provide IV curves for each, allowing an installer to greatly reduce the variance between the modules. These precautions may be enough on the first few weeks after installation. However, environmental effects such as uneven soiling, temperature variations, slight differences in orientation, and silicon degradation become evident within weeks and leads to significant losses due to environmental mismatch (even without shade). Figure 2 is a graph of a representative installation located in Northern California and taken in the middle of the day in June 2008 with full sun. [1] The graph plots voltage of each module in a string, one data point per second. If this system was operating at peak efficiency, each of these 170W multi-crystalline modules would be operating near their Vmp of 24.6V. We would expect to see a thick straight line above 24 volts – clearly this is not the case. The lower voltage output and high module distribution (up to 15%) represents lost power output. This also illustrates that it is rare for a module to be working at the maximum power point of the system. Those operating below their individual Vmp see large voltage swings as the inverter adjusts system current while those operating above system are less impacted.

“TRIAL AND ERROR” MAXIMUM POWER POINT (MPP) TRACKING
By observing the topology of most installations today, the most widely accepted approach for cost and reliability is to have a central inverter with a variable DC input from the array. The inverter performs the DC to AC conversion necessary to deposit energy production onto the grid. These single or multi-stage conversion processes from leading inverter manufacturers (DC/DC stepup for isolation and DC/AC) have been optimized over 50+ years, are highly efficient and
The MPP tracker within the inverter attempts to keep the array (or string) at the highest power output possible. To find the point at which the entire system can produce the maximum power at the current solar irradiance point, the tracker usually applies a “trial & error” algorithm which adjusts its current draw (load) on the system. By measuring the new DC power input, the tracker will determine whether to continue the adjustment in the same direction or reverse course. This process is constantly looking for the peak power point but rarely finds the system working at this point (only instantaneously during transitions). There are many variants of this algorithm but with input data limited to system DC voltage and current, all have limited accuracy. The task becomes significantly more complex during times of changing irradiance (ex. cloud cover, shading) as each module’s maximum power point is dynamically moving. System stabilization may take several minutes after a cloud has passed. Because each module has a series of by-pass diodes, a significantly under-performing module can be “turned off” when the current drawn from the inverter exceeds its ability to provide power.

Figure 3, taken from a commercial installation in Santa Cruz, California during a sunny day in June, 2008 with high clouds (using a string inverter), shows that there are extreme swings in module voltage. This variance exceeds the period of cloud cover and the array remains unstable over the next several minutes. When we look at the IV curves for these 125W multi-crystalline modules, there is almost no variance between Vmp as irradiance varies. Therefore, we should expect to see negligible changes in Voltage with a corresponding reduction in current as a cloud passes through the array. The voltage swings that are present exacerbate module mismatch, create strain on the module diodes and represent inefficiencies (often in excess of 50%) across the array. In a climate where frequent changes in irradiation levels (ex clouds) are normal – such as Eastern US, Germany, and Japan – the inability to maintain Vmp and quickly stabilize the system can greatly compound the energy losses.

IMPEDEANCE MATCHING
After analyzing data from many large scale “perfect” installations, it was clear that substantial environmental mismatch was still present. If the Trinasmart Optimizer could efficiently bring each of the modules to their optimal output point, the large-scale projects could yield up to 8% more energy output while less “perfect” sites could increase energy production by up to 20% more. The key to adding incremental value to PV projects was to develop a highly reliable and efficient (lowest power loss from the panel electronics) solution while minimizing the cost of implementation. Our patented, innovative approach to maximizing production output achieves these objectives while also delivering a comprehensive active project management console. The Trinasmart Optimizer and the intelligence which resides in the Trinasmart Maximizer Management Unit (MMU) applies our “Impedance Matching” approach to extract the maximum output from each module. The system was designed as a technology overlay, so that it performs optimally with all current PV system inverters.

WHAT “IMPEDEANCE MATCHING” IS NOT
To best understand the Trinasmart power harvesting technology, it is important to start with what it is not. The industry has known of the mismatch problem since the early days of photovoltaics. Applying MPPT to smaller portions of the array has been known to address the issue but these more distributed solutions have never been able to achieve a positive return on the incremental cost required to implement them in a larger scale project. Simple distribution of existing central inverter functions continues to be attempted with suboptimal results.

It is NOT “Distributed MPPT”
All power point tracking algorithms are based on a “trial & error” approach of adjusting impedance and measuring the
impact to aggregate power output. This is typically implemented at the central inverter for the array. Leading inverter companies have perfected these algorithms to provide very good results with the input parameters available. However, with only the system DC input voltage and power to work with, these trackers have fundamental issues with mismatch and rapid irradiance changes (such as clouds). Modern DC/DC distributed architectures have brought the “trial & error” power point tracking methods to the string and even panel level with the addition of buck/boost transformers and local digital intelligence to increase the granularity of the input to the algorithm. This approach has some positive impact in terms of power point tracking accuracy. However, Trinasmart does not implement a distributed “trial & error” approach to finding the operating point of the module. By implementing Impedance Matching, Trinasmart can more accurately and quickly find the exact optimal operating point and avoid putting expensive and relatively low efficiency electronics on each module.

It is NOT a “MicroInverter”

Inverters are available in a variety of capacities from 200 Watts to 2 Mega Watts. These inverter topologies include MPPT, (often a) DC/DC boost stage, and DC/AC inversion functions. By inverting at the highest capacity the system will accommodate, project designers minimize BOS cost (per Watt – see figure 4) and maximize AC conversion efficiency. The concept of AC modules emerged many years ago with the goal of bringing an inverter to each module to increase the granularity of the power point tracking. These smaller inverters have provided some benefit in very small installations for shade mitigation but continue to fall considerably behind larger central inverters in conversion efficiency and cost per Watt at implementation. The Trinasmart Optimizer is not a micro-inverter. We believe that product innovation can achieve much higher (2.5% to 3% more) system conversion efficiencies, increased reliability and lower costs than a traditional inverter topology scaled down to 200W. In addition, by adhering to today’s system partitioning of DC generation and central AC conversion, PV projects are better suited to meet the energy demands of direct DC loads (ex. data centers, manufacturing machinery, and electric automobiles) and the need for energy storage.

It is NOT “Distributed DC/DC Stage”

In many geographies, string voltage limitations remain relatively low (600V or below) and often require galvanic isolation in the system. For these reasons, many single and three-phase inverters contain a DC/DC boost stage to bring the input voltage to the AC bridge to an optimal point for conversion efficiencies. Several newer module-level power optimization products desegregate this DC/DC function and move it to module. By boosting or bucking voltage at the module level, these solutions implement a localized MPPT algorithm and provide a fixed voltage (either in serial or parallel) to a central inverter. In a market where isolation is required (ex. USA), these solutions can provide a comparable efficiency to a traditional system if used with a specialized transformer-less, MPPT-less, fixed voltage inverter. However, most large scale and European installations have already moved to highly efficient transformer-less (floating) topologies. Implementing an additional DC/DC stage in a transformer-less system or with a standard isolated inverter reduces system efficiency by 2-3%. Worse yet, the power dissipation related to the lower efficiency is transferred to the panels as heat and further reduces their production output. By innovating rather than distributing the DC/DC boost function, the system can achieve much better end-to-end system efficiency. Trinasmart also works with existing inverters, which provides customers with the flexibility to choose best-in-class inverter technologies for any region or application.

WHAT “IMPEDEANCE MATCHING” IS

The term Impedance Matching is often used in Radio Frequency (RF) applications where it is critical for highest power efficiency and lowest interference. To achieve maximum output of an RF transmitting device the impedance reflected to the transmitter should be equal to the internal impedance of that transmitter. The antenna will tend to have a fixed resistive load so that peak RF power is attained with a characteristic impedance which is identical. For example, examine the case of a power amplifier (PA) with an internal resistance of 50Ω and an external antenna with resistance of 100Ω, both...
measured at the operating frequency of the circuit (figure 5a). In this configuration, the power output of the PA will be far from optimal. To achieve maximum power output, the amplifier needs to "see" 50Ω on the output side. If 100Ω resistance was added in parallel to the antenna, the PA will achieve its maximum output, but much of this output will dissipate at the 100Ω resistor rather than being transmitted (figure 5b). In order to not waste power through the resistor, a capacitor and coil may be used reflecting "virtual" impedance of 50Ω at the circuit frequency (figure 5c).

![Source impedance differs from antenna impedance](image1.png)

Figure 5a

![100Ω in parallel to antenna](image2.png)

Figure 5b - RF impedance matching

![Capacitor & coil replace resistor](image3.png)

Figure 5c

Obviously this approach cannot be directly applied to the power electronics challenge within a PV installation. However, Trinasmart implements this concept in a unique, novel and patented way to achieve maximum harvest from each PV module. The Trinasmart Optimizer system does not use traditional DC/DC or Micro-inverter conversion technology which normally adds additional inefficiency to the array and reduces its power output.

The circuitry in the Trinasmart Optimizer has three main functions. The first is analog sensing by components which accurately measure the module voltage, current and temperature. Trinasmart contains a communications module (either wireless...
or PLC) which transmits the input parameters and receives the operating point from the MMU. Finally the Optimizer contains the “impedance matching” components to control the output of each module, ensuring that it is contributing the most energy possible.

The process starts with the Optimizer sensing the input parameters at each module. This information is transmitted from each module in the system to the MMU. The MMU collects voltage, current, and temperature from each module. The central processor at the MMU is able to calculate the exact IV properties of each module (including its desired Vmp) and transmit it back to the Optimizer. With access to the input variables, computation of the operating point to maximize the output of the module and the string has been derived by several mathematicians. While Trinasmart uses an optimized formula for the specific Optimizer implementation, an example of such an equation is below [2]

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Number of rows in an array</td>
</tr>
<tr>
<td>N</td>
<td>Number of columns in an array</td>
</tr>
<tr>
<td>W</td>
<td>Maximum Power (W)</td>
</tr>
<tr>
<td>W(1)</td>
<td>Maximum Power generated by an array with no cells shadowed (W)</td>
</tr>
<tr>
<td>W(2)</td>
<td>Maximum Power generated by an array with some cells shadowed (W)</td>
</tr>
<tr>
<td>A,W</td>
<td>Loss in Maximum Power generated by an array due to shadow effect (W)</td>
</tr>
<tr>
<td>Pm,n</td>
<td>Potential at the junction (m,n) (V)</td>
</tr>
<tr>
<td>Jm, n</td>
<td>Current through the junction (m,n) (A)</td>
</tr>
<tr>
<td>v</td>
<td>Array voltage (V)</td>
</tr>
<tr>
<td>Vm,n</td>
<td>Voltage across the solar cell (m,n) (V)</td>
</tr>
<tr>
<td>Im,n</td>
<td>Current through the cell (m,n) (A)</td>
</tr>
<tr>
<td>(Voc)m,n</td>
<td>Open circuit voltage for solar cell (m,n) (V)</td>
</tr>
<tr>
<td>(Iph)m,n</td>
<td>Short circuit current for cell (m,n) (A)</td>
</tr>
<tr>
<td>(Is)m,n</td>
<td>Diode saturation current for cell (m,n) (A)</td>
</tr>
<tr>
<td>(Rsh)m,n</td>
<td>Shunt resistance directly across the diode for cell (m,n) = 1000 Ω,</td>
</tr>
<tr>
<td>(Rs)m,n</td>
<td>Series resistance for cell (m,n) (Ω)</td>
</tr>
<tr>
<td>n</td>
<td>Ideality constant</td>
</tr>
<tr>
<td>Tm,n</td>
<td>Operating temperature for cell (m,n) = 300 °K</td>
</tr>
<tr>
<td>e</td>
<td>Electron charge = 1.6022x10^-19 Coulomb</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann's constant = 1.3806x10^-23 Joule/°K</td>
</tr>
</tbody>
</table>

The current-voltage relationship for a single diode solar cell (m, n) in an array can be obtained as follows:

\[f(V_{m,n}, I_{m,n}) = 0 \]

or

\[I_{m,n} - (I_{ph})_{m,n} + (I_s)_{m,n} \left\{ \text{exp} \left[\left(\frac{e}{nKT} \right) (V_{m,n} + I_{m,n}(R_s)_{m,n}) \right] - 1 \right\} + \frac{(V_{m,n} + I_{m,n}(R_s)_{m,n})}{(R_{sh})_{m,n}} = 0 \]

Figure 7 - an example equation for finding Vmp

The calculated Vmp point for each module is transmitted back to each maximizer and the impedance matching circuitry presents a virtual impedance to each module that is equal to the internal impedance of the corresponding module such that maximum energy is extracted from every module. As presenting a resistive impedance would obviously create power loss, the circuitry implements this in a more innovative manner. Through a combination of a FET and small capacitor, the Maximizer creates a “current tunnel” such that each module can operate at its optimal voltage and current while not affecting the maxpower string current, such that \(I_{module} + I_{tunnel} = I_{mp} \) (string) = Iout. Each module is thereby able to contribute its maximum output without affecting other modules in the string. String current remains at its optimal point
as supported by the highest performing modules in the string and the inverter receives a normalized string IV curve for accurate MPPT (no false peaks).

IMPEDANCE MATCHING - AN ANALOGY

Another way to understand the concept is to consider the analogy of two sections of water pipe. A solar panel with higher generating capacity (150 watts) can be equated to a pipe of larger diameter, while one of lower capacity (50 watts) is represented by the thinner pipe (figure 8).

![Figure 8](image)

As described in previous articles, equally sized modules can have different generating capacities depending on the amount of available irradiance and PV material properties. Differences can result from varying levels of shading and soiling; temperature differences; and silicon aging.

![Figure 9](image)

Connecting the panels in a string is analogous to connecting these pipes and allowing water to flow through them. As the pipe on the right is thinner than the left pipe the flow of water will be impaired:

- The weaker panel (thinner pipe) will limit the current flow through the array (top graphic in Figure 9)
- Additionally, the thinner pipe will start leaking and will even further decrease the overall water output of the array (overall power output of the string). The reason can be found in Figure 10 where panel I-V curves are shown.

By observing the IV curves, if the array control is working to maximize current, the voltage output of the weaker panels will drop (as the string current is higher than the optimal...
operating point of the weak panels and thus the weaker panel is forced to reduce its operating voltage point below Vmp). The optimal path for the weaker panels is described by (B) in figure 10 but the actual path the panel is forced to take is (A) which is resulting even lower power output for that panel and the whole array (analogous to the leaking). Figure 11 shows typical voltage measurements of interconnected (series) modules controlled by a central inverter, sampled synchronously every second. This particular data was captured in Berkeley, California during the summer of 2008. One can clearly see the voltage difference between the strong and weak panels in the array.

These effects have a “positive feedback” behavior, an undesirable system instability where “A” creates more of “B” which in turn creates even more of “A”. In the series connected PV case, less power output harvested from the solar panels will leave more of the available power on the panel creating heat. That additional heat will further decrease the power harvested from the panel which again will create more heat on the panel. The result is a feedback loop that negatively impacts overall power production. In the “pipe” analogy the water dripping from the pipe enlarges the holes and will increase the dripping and water loss (or energy loss in the case of PV).

Continuing to use the water analogy, Trinasmart’s “Impedance Matching” technology creates a parallel path for the water to flow using an additional pipe that goes around the weak panel. This pipe is adjustable and is programmed so that the sum of the weaker panel pipe and that newly introduced bypass pipe will create a path for the optimal flow of water. In the power electronics equivalent, the bypass tunnel will maintain the optimal flow of energy for the string and will be modulated so that the system can independently reflect to the panel an equivalent impedance to that of the panel.

This technique is not only used on the weakest panel on the array but on almost every panel. Each panel in the array will have an “impedance matching” pipe which can be programmed independently to carry current around the modules to extract their maximum energy harvest without affecting output of other modules in the string. The width of the bypass tunnel or the amount of current going around each panel is calculated by the MMU using information from each Optimizer on panel voltage, current and temperature. By changing the current flow through the panel, the voltage on the panel can be readily adjusted so that the panel voltage is brought to its optimal operating point (Vmp).
Another way to visualize "impedance matching" technology is to replace the traditional bi-pass diodes, which only turn on or off a panel segment, with intelligent "fractional" diodes that are capable of changing the size of the tunnel based on a command from the MMU. The tunnel size is calculated in a fashion similar to the equation in Figure 7 and enables the module to work at Vmp and Imp. The physical implementation is achieved by a very minimal FET and small capacitor controlled remotely by the MMU.

In a large system, where many strings are connected in parallel, the Trinasmart Optimizer also acts to minimize mismatch between strings. In most situations, string voltage, although variable, is almost identical as the average temperature across all strings is similar. As each module is operating at its max power point, Vmp of each module is almost identical. String voltages in this condition are within a small distribution and thus a constant voltage across the parallel string does not create a reduction to any one underperforming string (as opposed to the conditions without the Trinasmart Maximizer). In the unusual case that a subset of modules in one string are heavily shaded such that voltage output of an individual string is affected, the impedance matching effect creates the equivalent of a tunnel across the strings so overall system loss is eliminated. [3]
Summary
ADVANTAGES OF IMPEDANCE MATCHING RELATIVE TO ALTERNATIVES
(DC/DC buck boost, distributed MPPT or micro-inverters)

Very minimal electronics at the PV module level for:
- Best reliability
- Lowest cost
- Smallest footprint

Highest average efficiency at the module (statistically 99.5%):
- Best overall conversion efficiency of distributed solutions
- Lowest heat dissipation at the panel (often lower than that of today’s diodes)
- Avoids heating of the modules and associated output degradation
- Enables polycarbonate housing - no additional grounding
- Simple integration in existing module junction boxes

Smallest change to today’s array configuration (inverter, module wiring and BoS):
- No need to move inverter to fixed voltage (wasteful in energy as it adds an additional conversion stage)
- No need to stop inverter MPPT
- Great solution for retrofit of existing arrays
- Validated interoperability with proven inverter suppliers

Software controlled operation:
- Lowest cost and highest harvest accuracy
- Flexibility to adapt to new technologies and configurations
- Eliminates complex processing at the module

No trial and error algorithm at the module level
- Precise calculation of Vmp by sophisticated, patented approach

In summary, the Trinasmart impedance matching solution uses a combination of real-time module and string-level information to accurately compute the optimal operating state of each module. It readjusts the module by a process of impedance matching. The Trinasmart solution is able to quickly and dynamically find the maximum operating state for each panel and maintain system stability during cloud cover or shading. By implementing this statistically 99.5% efficient approach to power harvesting, financial productivity can be maximized throughout the life of the system.

References:
APMEA

China

Changzhou
Corporate Headquarters
No. 2 Tianhe Road, Trina PV Industrial Park, New District, Changzhou, Jiangsu, 213031
T + 86 519 8548 2008
F + 86 519 8517 6021
E sales@trinasolar.com

Shanghai
333 North Caoxi Road
CCIG International Plaza Building B, Offices 1704-1706
Shanghai 200030
E sales@trinasolar.com

Beijing
48 Dongzhimenwai Street
Oriental Kenzo Office Building, X-17KL, Dongcheng District, Beijing 100027
T + 86 10 5817 4080
F + 86 10 5817 4020
E sales_china@trinasolar.com

Singapore

Trina Solar (Singapore) Pte Ltd
Three Temasek Avenue
#16-03 Centennial Tower
Singapore 039190
T + 65 6808 1111
F + 65 6835 7225
E sales@trinasolar.com

Korea

Trina Solar Korea Ltd
B1-140, Daewoo Doivle 117
Hap-dong Seodaemun-gu
120-303 Seoul
T 02 392 1588
F 02 362 8820
E korea@trinasolar.com

Japan

Trina Solar (Japan) Limited
World Trade Center Building
33rd floor, 4-1 2-Chome
Hamamatsu-cho Minato-ku,
Tokyo 105-6133
T + 81 3 3437 7000
F + 81 3 3437 7001
E japan@trinasolar.com

Malaysia

Trina Solar (Malaysia) SDN. BHD.
Plot 201, Lebuhraja Kampung Jawa
Bayan Lepas FTZ, Phase 3, 11900
Pulau Pinang
T + 60 4685 2008

Australia

Trina Solar (Australia) Pty Ltd
Macquarie House
LEVEL 13, Office Number 1315
167 Macquarie Street
Sydney NSW 2000
T + 61 2 8667 3088
F + 61 2 8667 3200
E australia@trinasolar.com

United Arab Emirates

Trina Solar Middle East Ltd
Office #306, Injazat Building,
Mohamed Bin Zayed City,
Abu Dhabi,
PO Box 135084
T + 971 562047969
E uae@trinasolar.com

Europe

Switzerland
European Headquarters
Trina Solar (Schweiz) AG
Richtistrasse 11
8304 Wallisellen Schweiz
T +41 43 299 6800
F +41 43 299 6810
E europe@trinasolar.com

Germany

Trina Solar (Germany) GmbH
Einsteinring 26,
D-85609 Aschheim/München,
T +49 89 122 8492 50
F +49 89 122 8492 51
E germany@trinasolar.com

Italy

Trina Solar (Italy) Srl
Via Santa Maria Valle 3
20123 Milan
T +39 02 0068 1521
F +39 02 0068 1400
E italy@trinasolar.com

Spain

Trina Solar (Spain) Slu
Paseo de la Castellana 141,
8th Floor,
28046 Madrid,
T +34 91 572 6576
F +34 91 572 6621
E spain@trinasolar.com

United Kingdom

Trina Solar (UK) Ltd
Regus East Midlands Airport
Pegasus Business Park
Herald Way, Castle Donington
Leicestershire
DE74 2TZ
T +44 1332 638 700
F +44 1332 638 160

France

Trina Solar (France) SAS
21 Avenue Georges Pompidou
69486 Lyon Cedex 03
T +33 (0)4 72 91 30 00
F +33 (0)4 72 91 30 30

North America

United States

Trina Solar (U.S.) Inc
100 Century Center, Suite 340,
San Jose CA 95112,
USA
T +1 800 696 7114
F +1 800 696 0166
E usa@trinasolar.com

For more info
www.trinasolar.com

APMEA refers to Asia Pacific, Middle East and Africa